ON THE SUBSTITUTION-REACTION OF IF5 BY OXO-COMPOUNDS

H. J. Frohn*, G. Holtus and W. Pahlmann

Universität - GH, Duisburg, FB 6, Anorganische Chemie, D 4100 Duisburg 1 (F.R.G.)

Fluorine in IF_5 can be replaced by oxogroups using silylated alcoholes, carboxylates or siloxane itself. Systematic investigations of the fluorine-monoalcoholate-exchange in solution [1] show that $IF_4(OR)$ is the only stable exchange-product at room temperature. Higher substitution products are unstable and undergo bismutation- and elimination-reactions:

$$IF_3(OR)_2 \longrightarrow IF_4(OR) + IF_2(OR)_3 \qquad IF_2(OR)_3 \xrightarrow{-ROR} IF_2O(OR)$$

 ${\rm IO}_2{\rm OR}$ as the final product of nucleophilic exchange results on different routes:

$$\frac{\text{IF}_{5}}{\text{IOF}_{3} \xrightarrow{-\{F\}}{+\{0R\}}} \rightarrow \text{IF}_{2}O(OR) \xrightarrow{+\{0\}}{-2\{F\}} \rightarrow \text{IO}_{2}(OR)$$

 α -Branching in the aliphatic alcoholic group results in higher instability (alkylfluoride-elimination) of the iodine(V)fluoride alcoholates.

No stable iodine(V)fluoride phenolates can be prepared.

Using di- and trialcoholates two competing reaction products can be observed: $IF_4O(CRR')_nOIF_4$ and $IF_3[O(CRR')_nO]$

In addition higher exchange products are formed: $IF[O(CRR')_n 0]_2$

Expanding our exchange-concept to the IF_5 -carboxylate-system it was possible to synthesize $IO(O_2C-R)_3$, $IO_2(O_2C-R)$, and in the case of the oxalate-group: $IF_3(O_2CCO_2)$ and $IFO(O_2CCO_2)$.

- 1 H.J., Frohn, W.Pahlmann
 - J. Fluorine Chem., in press